

John Doe

john.doe@duke.edu | +1 xxx-xxx-xxxx | https://github.com/JDoe

Education

Duke University, Durham, NC Master of Science in Computer Science May 2019

GPA: 3.7

Great University, Granville, OH

May 2017

Bachelor of Science in Computer Science, Double Major in Mathematics, Minor in Economics Major GPA: 3.7/Overall: 3.6

Programming Skills

Programming Languages: Python, C/C++, Java, R, SQL, Scala, Spark

Skills: AWS, Hadoop, MongoDB, Django, Arduino, Stata, Mathematica, HTML, LaTex

Projects

Klaviyo Weather Powered Email, Durham, NC, Full Stack Project

Jan 2017

- Designed a full stack web application in **Django**, taking the sign-up forms from users to send personalized emails based on the current weather at the subscribers' location
- Wrote front-end in HTML with CSS styling and the back-end stores the subscribers' information in MySQL

Perceptron Clustering on Wikipedia Data, Granville, OH, Senior Project

Mar - May 2017

- Designed a MPI program utilizing 20 Linux machines to download 5 Terabytes data in an efficient manner
- Wrote two **MapReduce** jobs in Java to clean the data in **HDFS**
- Wrote **bash** scripts to handle massive data transportation from local machines to **HDFS**.
- Incorporated two parallel computing libraries, **MPI** and **Pthreads** to achieve the parallel querying on Wikipedia query API website, and achieved a dramatic speedup
- Designed a data analysis program with **SQL** database in serialized **Python** version (same result was also achieved in parallel **MapReduce** version after assigning the database into a distributed file system)
- Demonstrated the procedure and the mechanism behind such multi-parallel hybrid system in paper
- Presented and addressed the result of the analysis, the limitations of existing hardware, and the potential future problems

Related Experience

Software Engineer & Research Scholar

May - July 2016

Data Streaming Algorithms for the Chi-Square Test, Granville, OH

- Designed 4 streaming algorithms for 3 variants of the Chi-square Test with minimum assumption of the stream
- Implemented the algorithms with experiment evaluations and basic streaming fashion statistics, open-sourced on GitHub
- Validated the performance of results through extensive testing on both real and synthetic data sets on a large-scale (stream size $n \approx 107$)
- Submitted a ten-page paper to IEEE 2017 conference and presented research findings at the Anderson Program Science Symposium

Honors & Awards

• 1st Place, Regional Programming Contest, Ohio Wesleyan University	Nov 2017
 1st Place, Ohio Four College Math Contest, Wittenberg University 	Mar 2017
Upsilon Pi Epsilon, Computer Science Honor Society	Apr 2016
Pi Mu Epsilon, Mathematics Honor Society	Apr 2016
Mortar Board National Senior Honor Society	Apr 2016